





An Empirical Study of Regression Testing Techniques 
Ani Rahmani1, Joe Lian Min2 and Asri Maspupah3
1,2,3Department of Computer Engineering and Informatics 
Bandung State Polytechnic 
Jln. Gegerkalong Hilir Ds. Ciwaruga – Bandung 40012 – Indonesia
{anirahma, joelianmin, asri.maspupah}@jtk.polban.ac.id
Abstract. Regression testing is a testing process for established software and developed ones. Adding features to the software should not cause errors in the previous software version. There are several methods for implementing regression testing. The most straightforward is to do retest-all, but this technique is costly and protracted because it has to execute all test cases in the test suite. This situation is the nature of regression testing research, i.e. determining how to execute only a few test cases to shorten the time, and the faults can be found as much as possible. Recently there are various algorithms for regression testing process. This paper explains an empirical study of several regression testing methods. In the empirical evaluation, we used open-source SUTs, and several are implemented ourselves. On the other side, we utilize an MTS tool from  the software artefact repository (SIR) and other open-source tools to automatic testing execution.  The empirical study shows that each technique has a specific characteristic, and also has effectiveness significantly to reduce execution time testing process. So that in the regression testing implementation, it is crucial to determining the techniques considering each of them has consequences.


Introduction
Regression testing (RT) is re-testing activity, to ensure that modifications to the system do not affect to other parts, and unrelated factors remain stable as before [1]. In general, there are three techniques for regression testing execution: regression test minimizing (RTM), regression test selection (RTS), and test-case prioritization (TCP) [2]. The RTM technique will reduce or delete test cases that are considered redundant or nearly the same. RTS will select the test cases that meet the specific criteria. Meanwhile, TCP will order the test cases according to the specified criteria for prioritizing [3]. Figure-1, Figure-2, and Figure-3 illustrate the regression testing techniques. 
Recently regression testing research area has a challenge to get better effectiveness. For instance, RTS research has conducted in the study [1][2] and [3]. The authors [4] [5] and [6] studied an RTM technique, and the last, study [7]and [8] in the TCP technique. The authors [10] and [11] studied regression testing in common. Dini et al. [4] investigated the effect of two techniques, "fine-grained" and "coarse-grained" in selecting test cases based on five-level dependence. The study conducted trials on 800 commit processes for regression testing. His research results show that the average fine-grained RTS is more effective than the search-based test case generation. On the other side, Anderson [9] recommends a TCP technique based on telemetry data. This study shows an increase in the mean of reduction in the test suite and testing execution time. 

	[image: Diagram

Description automatically generated]








Figure-1. The Test-case Selection Process
	Full Test Suite
[image: Diagram

Description automatically generated]







Figure-2. The Test-case Minimizing Process

	[image: ]
Figure-3. The Test-case Prioritization Process



Other research has looked at regression testing from several perspective through the survey or the systematic literature review (SLR). Rosero [10] has surveyed 460 research papers and described 25 articles that discuss the application of 31 regression testing techniques. This study recommended the strategies and measurement of regression testing, including costs and the ability to detect efficient faults. Meanwhile, H, Do  [11] has reviewed 99 papers that discuss regression testing from some perspectives: concepts, metrics, technology, scalability comparisons, and the trend approaches.
This study aims to see the regression testing technique effectiveness and how they work through an empirical study of several regression testing algorithm. This study also intended to obtain an initial understanding of regression testing technique implementation in the software testing execution. The explanation after the introduction is a method (section 2), results and discussion (section 3), and the last is a conclusion (section 4).

Method
There are several activities in this study. All of that explain in this section. 
2.1 Regression Testing Techniques Selected
Although there are many algorithms in each regression testing technique, this study only uses one algorithm for each regression testing technique. Each algorithm is studied from how it works, the input required, and the output results. The algorithms are: 
a) BabelRTS algorithm for regression test selection (RTS) process; This study utilizes the BabelRTS source code available at Github[12]. 
b) Fast++ algorithm for regression rest minimization (RTM) process; Source code is available on Github, and for execution, we modified accordingly[13] .
c) Greedy for test case prioritization (TCP) process. The source code is implemented based on the algorithm in the study [14].
2.2 Software under Test (SUT)
The software under test (SUT) is an object software that will be tested. We use the six SUTs in this study.The OpenMRS and JodaTime are available on Github, while NumbertoWord and Palindorm have implemented ourselve. On the RTM and TCP study, we use the print_token and print_token2 software as an SUT. These SUT’s are available in the software-artifact infrastructure repository (SIR) [15]. Print_token has eight versions consisting of one original version and seven mutant versions. In this study, we use the original version and the seventh version to support the empirical study. All of SUT are identified by the line-of -code (LoC), the number of faults, and the number of test cases. Table 1 shows the list of SUTs for test case selection or regression test selection (RTS) studies.

Table 1. List of SUT 
	No
	SUT Name
	Description
	Regression
technique
	Source code Language
	a 
	b 
	c 

	1
	OpenMRS
	Medical Record System Open Source
	RTS
	Phyton

	90
	7
	20

	2
	NumbertoWord
	Convert the number to the word
	RTS
	Phyton
	70
	5
	10

	3
	Palindrom
	Reverse the word
	RTS
	Phyton
	51
	3
	10

	4
	JodaTime
	Jona Time Transformer
	RTS
	Phyton
	71657
	11
	24

	5
	Print_token 
	Identify and print a token
	RTM 
	C
	563
	11
	1107

	6
	Print_token2
	Identify and print a token
	TCP
	C
	570
	9
	1100


Notes: a. Line of Code (LoC); b. Number of Fault; c. Number of test case
2.3 Automatic Testing Tools
This empirical study uses an automatic testing tools BabelRTS (for RTS process) [12], and the MTS tools that available in the SIR repository [15] for RTM and TCP processes. Both tools are the open source software.
2.4 The Effectiveness Measure 
To find the regression testing effectiveness, some researchers use a various metric.  This study uses one metric for each technique, adjusted for their specific characteristics. RTS and RTM will reduce the number of test cases from the test suite. Thus, it will undoubtedly affect the execution time of the testing process. Based on this situation, the RTS and RTM techniques use the execution time metric. Meanwhile, since the TCP will not subtract the test cases from the test suite, like the most TCP researchers, we use average percentage fault detection (APFD) metric to measure the effectiveness technique.

Results and Discussion
This section explains the results of this study. 
3.1 BableRTS for Regression Test Selection
BabelRTS is an algorithm as well as a tool built using the Python language. The source code is openly available on Github [12] . BabelRTS has a function to run the test case selection process.  This function selects a test case that must be tested again when the SUT is modified. In general, babelRTS performs the following processes:
1. Hashing all files in the SUT used
2. Comparing the hashing of the previous version of SUT and the latest version of SUT.
3. Mark all files differently with the status change. A different file filled refers to the file changed, and the file that was recently added.
4. Looking for the dependency of the file given the status change and changing its status to change.
5. Save the hashing of the latest version of SUT and save the process results in a file with JSON format (Table 2). 
Table 2. Output Files List
	No.
	File name
	Description

	1
	selected.json
	A JSON file that contains a list of test cases that must be retested as a result of modifications 

	2
	dependency.json
	A JSON file that contains a list of dependencies for all files on SUT.

	3
	change.json
	JSON file that contains a list of change files in the latest version 

	4
	hashes.json
	JSON file which contains hashing of all SUTs.



3.2 FAST++ Algorithm for Regression Test Minimizing
The FAST ++ algorithm has two inputs: test suite and a fault matrix. Format for the fault matrix is ​.txt, contains a list of test cases that found the faults. Generally, the FAST ++ algorithm has 3 (three) stages: (i) Preparation, (ii) Reduction, and (iii) Completion. The FAST++ algorithm shows below [4].
	Input: Test Suite T, Fault Matrix F
Output: Reduce Test Suite File f
1. P  RandomProjection(T)
2. S  FirstSelection(P)
3. R  List(S)
4. D  Distance ()
5. D(S)  0
6. while (Size(R) < B) do
7.    for all t  P do
8.       if d(P(t)), P(s)2 < D(t) then 
9.           D(t)  d(P(t), P(s))2
10.    S  ProportionalSample (P, D)
11.    R  Append (R, S)
12.    D(s)  0
13. end while
14. fd1  FDL (R, F)
15. fd  OpenFile(‘reduceTS.txt’)
16. for all tc  R do
17.     write (f, tc)
18.     CloseFile(f)
19. return f
	In the preparation stage, FAST++ will map the test cases in the test suite to a vector-based on the vector-space model and reduce the test case' dimensions using random projection. This stage is a pre-processing to enter the reduction stage. In the reduction stage, the vector is entered into the k-means algorithm to calculate its relationship. In the FAST ++ algorithm, the cluster value for the k-means is the number of test cases that took in one test. In this study, we define this value as 20% of the number of test cases. The last step is “completed”. At this stage, the reduced test case is inserted into a file with a text extension (.txt). The output is the selected test case number. Therefore, steps are needed to return the chosen test case into the same format as the input test suite.


3.3 Greedy Algorithm for Test Case Prioritization Technique
Many TCP studies utilize a greedy algorithm, two of which are studies conducted in [16] and [17].  The Greedy algorithm works on the principle that the test case with the highest weight will first take, followed by the second weight, and so on. The weight is calculated based on the number of faults that the test case detects. Before ordering the test cases, it is necessary to know the number of faults that each test-case can detect. It aims to provide the weight on each test-case. Table 3 illustrates the ordered test-cases in the Greedy algorithm and the faults detected. 
Table 3. The Example of the Test Case and Fault Detected
		Fault
Test Cases
	f1
	f2
	f3
	f4
	f5
	f6
	f7

	tase-case-1
	X
	
	
	
	
	
	

	tase-case-2
	
	X
	X
	X
	X
	
	

	tase-case-3
	X
	X
	X
	
	
	
	

	tase-case-4
	
	
	
	
	X
	X
	X

	tase-case-5
	X
	X
	
	
	
	
	

	tase-case-6
	
	
	
	X
	X
	X
	X

	tase-case-7
	
	X
	X
	X
	X
	X
	X


The test-case1 detects f1(fault1), test-cases2 detects f2, f3, f4 and f5; test-case3 detects f1, f2, and f3, and so on, up to the test-case7. Next, the test case and fault are converted into a two-dimensional array so that it can be sorted using the greedy algorithm (Table 4). While Table 5 shows the weight of each test case. The Greedy algorithm will sort the test cases with the descending ordering. Therefore, the results of the test case sequencing are test-case7, test-case2, test-case6, test-case3, test-case4, test-case5, and test-case1.
	[bookmark: _Toc53036882]Table 4 Array of Test Case and Fault
	Test Case
	Fault

	tase-case-1
	{f1}

	tase-case-2
	{f2, f3, f4, f5}

	tase-case-3
	{f1, f2, f3}

	tase-case-4
	{f5, f6, f7}

	tase-case-5
	{f1, f2}

	tase-case-6
	{f4, f5, f6, f7}

	tase-case-7
	{f2, f3, f4, f5, f6, f7}


             Note: fi: faulti 
		[bookmark: _Toc53036883]Table 5 The Test Cases Weight

	Test Case
	Weight

	tase-case-1
	1

	tase-case-2
	4

	tase-case-3
	3

	tase-case-4
	3

	tase-case-5
	2

	tase-case-6
	4

	tase-case-7
	6





3.4 Effectiveness Measure
According to the method explain above, the RTS and RTM techniques use the execution time metric to see its effectiveness, while TCP technique uses an APFD metric.  
3.4.1 RTS dan RTM Effectiveness
We measure the effectiveness of RTS and TRM technique utilising the execution time. In this context, the formulation shows in formula 1. The empirical study results on four programs for RTS technique shows in Table5. 
Effectiveness (RTS/RTM) = (ExecutionTime(RetestAll) - ExecutionTime(RTS/RTM))/ExecutionTime(RetestAll) X100%.     (1)           
                                                        Table 5. RTS Empirical Results
	No
	SUT
	Execution Time (second)
	Effectiveness (%)

	
	
	Retest-All
	BabelRTS
	

	1
	OpenMRS
	51.414
	45.467
	12%

	2
	NumberToWord
	3.573
	2.432
	32%

	3
	Palindrome
	3.644
	2.518
	31%

	4
	JodaTime
	24.973
	19.803
	21%

	Average
	23%


In the empirical study of the RTM technique, we used ten iterations. Since print_token has multiple test cases, and for one subtraction, it generates about 200 test cases, it has variable execution times. We decided to execute in 10 iterations to find 2000 test cases, which is twice the test cases in print_token. Table 6 shows the result of the RTM technique.
					Table 6. RTM Empirical Results
	Iteration
	Retest All (second)
	RTM (second)
	Effectiveness (%)

	1
	0,242
	0,01
	 96%

	2
	0,227
	0,111
	51%

	3
	0,23
	0,006
	97%

	4
	0,228
	0,005
	98%

	5
	0,237
	0,008
	97%

	6
	0,253
	0,009
	96%

	7
	0,231
	0,007
	97%

	8
	0,24
	0,007
	97%

	9
	0,248
	0,008
	97%

	10
	0,23
	0,008
	97%

	                                               Average
	92%


3.4.2 TCP Effectiveness
To measure the effectiveness of TCP, most researchers use average percentage fault detection (APFD). The APFD calculation is to take the average percentage of errors detected during the implementation of the test suite. The APFD value ranges from 0 to 100; a higher value implies a faster (better) error detection rate. Formula 2 is an APFD formulation [18].
	
	(2)


[bookmark: _Hlk38159951]Notes:  T is a test-cases; n is a number of test cases; m is the number of faults; (Tf ..Tfm)is the first test position T which a fault found.

We use print_token2 as SUT to execute the TCP study. This program has nine faults and 1100 test cases. The result of without ordering is 82,5%, and the utilize Greedy algorithm has 99.712% APFD value. This value is considered quite useful in terms of effectiveness. On the other view, utilizing an APFD is more effective in cases where one test suite has one test case that may detect several faults. The overall idea behind APFD is to count the number of test cases (or parts of a test suite) run in a particular order and the number of fault data variations (fault unique) detected by test case execution. The maximum APFD is when the first test case detects all faults, and the minimum APFD is when the n-1 test case detects no defects.

Conclusion 
According to this empirical study, regression testing techniques can significantly reduce the testing process's implementation time. This situation will substantially support the software development process, which currently applies mostly iterative-incremental methods. On the other hand, this study still has limitations because it only explores one technique in each approach and only uses one metric to measure effectiveness. However, empirical studies of this kind are useful for understanding existing techniques and developing new ones, with a broader approach and a wider variety of effectiveness metrics. Based on the existing approach, the opportunity to develop new techniques is still wide open. 

References
[1]	Chen Y, Probert R L and Sims D P 2002 Specification-based regression test selection with risk analysis Proc. 2002 Conf. Cent. Adv. Stud. Collab. Res. 1
[2]	Bhandari P and Singh A 2017 Review of object-oriented coupling based test case selection in model based testing Proc. 2017 Int. Conf. Intell. Comput. Control Syst. ICICCS 2017 2018-Janua 1161–5
[3]	Banias O 2019 Test case selection-prioritization approach based on memoization dynamic programming algorithm Inf. Softw. Technol. 115 119–30
[4]	Cruciani E, Miranda B, Verdecchia R and Bertolino A 2019 Scalable Approaches for Test Suite Reduction Proc. - Int. Conf. Softw. Eng. 2019-May 419–29
[5]	Khan S U R, Lee S P, Ahmad R W, Akhunzada A and Chang V 2016 A survey on Test Suite Reduction frameworks and tools Int. J. Inf. Manage. 36 963–75
[6]	Taneja D, Singh R, Singh A and Malik H 2020 A Novel technique for test case minimization in object oriented testing Procedia Comput. Sci. 167 2221–8
[7]	Luo Q, Moran K, Zhang L and Poshyvanyk D 2019 How Do Static and Dynamic Test Case Prioritization Techniques Perform on Modern Software Systems? An Extensive Study on GitHub Projects IEEE Trans. Softw. Eng. 45 1054–80
[8]	Shin D, Yoo S, Papadakis M and Bae D H 2019 Empirical evaluation of mutation-based test case prioritization techniques Softw. Test. Verif. Reliab. 29 1–28
[9]	Anderson J, Azizi M, Salem S and Do H 2019 On the use of usage patterns from telemetry data for test case prioritization Inf. Softw. Technol. 113 110–30
[10]	Rosero R H, Gómez O S and Rodríguez G 2016 15 Years of Software Regression Testing Techniques - A Survey Int. J. Softw. Eng. Knowl. Eng. 26 675–89
[11]	Do H 2016 Recent Advances in Regression Testing Techniques Adv. Comput. 103 53–77
[12]	Maurina BabelRTS https://github.com/GabrieleMaurina/bab elRTS
[13]	Anon Fast-R https://github.com/ICSE19-FAST-R/FAST-R
[14]	Li Z, Harman M and Hierons R M 2007 Search algorithms for regression test case prioritization IEEE Trans. Softw. Eng. 33 225–37
[15]	Anon National Science Foundation https://sir.csc.ncsu.edu/portal/index.php
[16]	Azizi M and Do H 2018 Graphite: A Greedy Graph-Based Technique for Regression Test Case Prioritization Proc. - 29th IEEE Int. Symp. Softw. Reliab. Eng. Work. ISSREW 2018 245–51
[17]	Chi J, Qu Y, Zheng Q, Yang Z, Jin W, Cui D and Liu T 2020 Relation-based test case prioritization for regression testing J. Syst. Softw. 163
[18]	Elbaum S, Malishevsky A G and Rothermel G 2002 Test case prioritization: A family of empirical studies IEEE Trans. Softw. Eng. 28 159–82

image3.tiff
Full Test Suite

Test.casel

Testcase2

Testcase3

Test.cased

Testcases

Test.cases

Test Case Prioritization Criterion
¥ L3
Testcasef | Testcase | Testcased | Testcasel | Testcased | TestcaseS

Prioritize Test Suite





image1.tiff
Full Test Suite

Test.casel

Testcase2 | Testcased | Testcased | TestcaseS

Test.cases

Tostcssed | Tostcased | TostcaseS

‘Selected Tests Suite





image2.tiff
Test-casel Testieased | Testcased | Test.cases

v

Testcasel | Testeased | Testcases

‘Minimized Test Suite




