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Abstract. Tuberculosis is a serious infectious disease caused by Mycobacterium tuberculosis (MTB) that primarily affects the lungs. It is known that several strains of MTB are resistant to drugs used in the treatment. This situation calls for the importance to detect and prevent further drug resistance and thus reducing the mortality rate. The conventional molecular diagnostic test is costly, requires a long time to conduct, and has low prediction ability. This research aims to explore the Machine Learning approach to accurately predict drug resistance which offers a much faster and cheaper solution than the conventional one. Experiments were carried out on 3393 isolates of MTB using several Machine Learning algorithms including C4.5, Random Forest, and Logitboost. Multiple drugs evaluated in this study include rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA), and ethambutol (EMB). By using 10-fold cross-validation, the result had demonstrated that the model can accurately predict drug resistance with an accuracy of 99% and with Area Under Curve (AUC) reaching (near) 1.	Comment by power rangers: Abstrak harus berisi tujuan, method, hasil utama, dan implikasi
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Tuberculosis is a serious infectious disease caused by Mycobacterium tuberculosis (MTB) that primarily affects the lungs. It is known that several strains of MTB are resistant to drugs used in the treatment. This situation calls for the importance to detect and prevent further drug resistance and thus reducing the mortality rate. The conventional molecular diagnostic test is costly, requires a long time to conduct, and has low prediction ability. The whole-genome sequencing (WGS) captures the known and rare mutation of the MTB isolates that may contribute to the drug resistance. These mutations are used as the features for classifying the isolates if they are resistant to a drug. This research aims to explore Machine Learning (ML) techniques to accurately predict drug resistance which offers a much faster and cheaper solution than the conventional techniques.
Materials and Methods
Genetic data of 3393 MTB isolates were retrieved from Kaggle. Multiple drugs evaluated in this study include the first-line drugs, i.e rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA), and ethambutol (EMB). Positive classes for RIF, INF, and PZA are 61%, 54%, 66%, and 71% respectively. The data have 222 columns representing the mutation sites. Entries with missing values are omitted or not omitted depending on whether the ML technique can handle missing values. Three ML methods are used namely C4.5, Random Forest (RF), and Logitboost. C4.5 is a classification method based on tree structure introduced by Ross Quinlan [1]. Recent research had used C4.5 for wildfire modeling [2] and rain modeling [3]. RF is an ensemble classification model that uses multiple trees to predict classes and use votes from those trees to determine the final class label. Logitboost is a boosting technique that uses decision stumps (decision tree with a single internal node). It is introduced by Friedman et.al. in 2020 [4]. The experiments were carried out by using the Waikato Environment for Knowledge Analysis (WEKA) software [5] and the scikit-learn Machine Learning library in Python [6]. The original data is coded with [0,1] but for the processing with WEKA, we convert it to [F,T] respectively. The sample of the data is shown in Table 1. The performance evaluations of the model are done by using metrics such as Precision, Accuracy, and Area Under Curve (AUC).


	Table 1. Sample of the data	Comment by power rangers: Dijelaskan apa yang dimaksud dalam table tersebut



	mutation1
	mutation2
	…
	mutation222
	RIF

	F
	T
	…
	F
	T

	T
	F
	…
	T
	F

	F
	F
	…
	F
	T
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Table 2 shows the performance comparison of the models on each drug using the 10-fold cross-validation technique. This result showed that the best model performance is specific to the data, although the difference is minuscule. This result disagrees with previous research that certain models are better than the other, e.g ensemble vs single tree [7], Random Forest [8], Logistic regression, and gradient tree boosting [9], although not yet tested against WDNN which performed better than regularized logistic regression and random forest  [10]. This study concluded that model performance is data-specific which is also stated by [11]. However, this research produced a better result than recent research [12]. The best methods in this research produced an average of 0.975 AUC on the first line drugs which only slightly lower than other research where Logistic Regression and MD-WDNN performed best with an average AUC of 0.979 [13]. Figure 1 shows a comparison of the best and worst model’s AUC.
Next, additional parameter tunings were done using the scikit-learn Machine Learning library in Python. These experiments were done using a test split of 0.1. When tuning the parameter for RF with n trees = 74 (222/3), the best result can have the AUC up to 1. This result again showed that the model performance is data-specific (although can be minor) and can be affected by the parameter setting as also mentioned in research on Random Forest [14]. It is concluded that parameter tuning can produce (slightly) better model performance.






	Table 2. Performance comparison of the models on each drug


	Drugs
	Model
	Precision
	Accuracy (%)
	AUC

	RIF
	J48
	0.967
	96.67
	0.972

	
	J48 (min 10 cases)
	0.956
	95.60
	0.977

	
	RF
	0.951
	95.00
	0.99

	
	Logitboost
	0.950
	95.00
	0.99

	INH
	J48
	0.960
	95.95
	0.967

	
	J48 (min 10 cases)
	0.961
	96.10
	0.961

	
	RF
	0.951
	95.10
	0.985

	
	Logitboost
	0.961
	96.10
	0.982

	PZA
	J48
	0.923
	92.21
	0.923

	
	J48 (min 10 cases)
	0.925
	92.49
	0.943

	
	RF
	0.919
	91.74
	0.959

	
	Logitboost
	0.908
	90.82
	0.944

	EMB
	J48
	0,916
	91.44
	0.916

	
	J48 (min 10 cases)
	0,918
	91.62
	0.945

	
	RF
	0,922
	91.96
	0.967

	
	Logitboost
	0,911
	91.20
	0.963




	Table 3. RF model accuracy on different n_trees


	Drug
	n_trees = 10
	n_trees = 15
	n_trees = 74
	n_trees = 50

	
	Acc
	AUC
	Acc
	AUC
	Acc
	AUC
	Acc
	AUC

	RIF
	0.970
	0.99
	0.970
	0.99
	0.985
	1.00
	0.985
	1.00

	INH
	0.945
	0.97
	0.955
	0.98
	0.960
	0.97
	0.960
	0.97

	PZA
	0.964
	0.95
	0.964
	0.94
	0.974
	0.94
	0.974
	0.93

	EMB
	0.985
	0.99
	0.979
	0.99
	0.985
	0.99
	0.985
	0.99
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	Figure 1. Comparison of the best and worst model’s AUC
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We experiment on using ML techniques to predict MTB drug resistance based on DNA data. The result had demonstrated that ML techniques can accurately predict drug resistance with an accuracy of up to 99% and with Area Under Curve (AUC) reaching (near) 1. The result also showed the model performance is data-specific and that parameter tuning can result in a (slightly) better performance.
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