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Abstract. Phytoplankton growth model has been observed extensively to track the movement of elements through aquatic food webs and ecological processes.The dynamic behavior of phytoplankton growth can be modeled with a simplified model. In this paper, we transform a phytoplankton growth model by using a finite difference Euler method to find its discrete-time solution. The obtained disCrete-time model is then analyzed. We focused on the existence and stability of the fixed-points. We break into two cases and conclude that all of them is dynamically consistent with its continous model only for relatively small-step size. We present some numerical simulation to illustrate those cases.	Comment by Q: Abstrak harus berisi tujuan, method, hasil utama, dan implikasi

Introduction	Comment by Q: 1. Harus ada state of the art/originalitas (perbedaan dengan penilitian yang lain) minimum ada 5 rujukan/referensi, tuliskan permsalahan dan tujuan
2. Literatur review menjelasan gap riset bukan definisi-definisi yang sudah baku

Ecology can be describe as scientific study of how organism interact with other and their environment. Aquatic ecology, in other hand, includes the study of those relationship in all aquatic environments, including rivers, lakes, and oceans. One focus on studying aquatic ecology is phytoplankton growth, since they supply food to their environment [1][2][3]. They act as water indicator that show whether the water quality is good or poor [4]. They also have ability to respond to enviromental changes. It means that the quantity of phytoplankton in an aquatic environmet plays important thing.	Comment by Q: Mohon menggunakan aplikasi mendelay
Many research has been done recently to identify the dynamics of phytoplankton, especially on blooming algae phenomenon called HABs (Harmful Algae Blooms) such as [5][6]. HABs occur when colonies of algae grow out of control and produce toxic effects on nearby environment. Nutrient loadings, pollution, water flow modification and climate change play a role to the HABs phenomenon. Mathematical model can be an effective means to discover the dynamics of plankton using conceptual model [7][8][9]. Phytoplankton growth was introduced as the following system.
	= input – uptake – loss
	= uptake – (death + sinking)	(1)
Finite difference method has been used to discretize the continous model to find its numerical solution. The common method is by using Euler method [10][11]. In this method, the step-size h plays an important role. This method have been applied to various models, such as [12][13][14]. Furthermore, analyses and numerical simulations can obtain insights into the mechanism of phytoplankton growth, where modifications to the equations via simulations to illustrate our theoretical results. In the following section, we wil discuss whether this method will dynamically consistent with its continous model or not.
Method 
A simple phytoplankton growth 
The phytoplankton growth model that we used in this paper is written as follow.
 = I – NP – qN
                                                                        = NP – P  	(2)
where N denote nutrient supply in such aquatic environment, P denote phytoplankton biomass, I and q are parameters. We assume that the concentration of the nutrient is given in mg/m3 of water per day. In this paper, we break the parameters into two cases. The first case is I = q = 0 which means that there is no nutrient supply and nutrient loss over (2), while the second case is I > 0 such that there is nutrient loss q ≥ 0. 
Euler Method
Euler method state that if we have system of differential equation
 = f(x, y)
                                                                       = g(x, y)	  (3)
then the numerical system of (3) can be written as
xn+1 = xn + h f(xn, yn)
yn+1 = yn + h g(xn, yn)
where h is the step-size.
	Subtituting (2) to (3) for the first equation with step-size h, we have
		              , 		
	           
				.			  (4)
Doing the same for the second equation, we have	
				             ,							                         ,
 			  			       .			  (5)
Combining (4) and (5), the discrete model of (2) now can be written as
			           ,							  	   		(6)

Result and discussion
First case (I = q = 0)
If we subtituting I = q = 0 to (6) then we have
						         ,	
			 			     			  (7)
We know that
				          ,
		 		             .				  (8)
and
		 		       ,
	    					         ,		  		 (9)
Since h > 0, then we have 
     							(N*P*) = 0 	 		  	(10)
or 
	       					(NP* − P*) = P* (N* − 1) = 0		  	(11)
With easy manipulation, one can find that N* − 1 = 0 or P* = 0. Subtituting P* = 0 to (10) then we have N* = k, where k constant derrived from initial condition. Equilibrium for the first case is E1 = (k, 0). 

Second case (I > 0, q ≥ 0)
For the second case, we have 
						
		   		   		     					since ,
	   					         		    	  	(12) 
and
		 				,
				   ,
				         ,								
since , we have					
				       
	           			     		  		  	 (13)
From (13), we can conclude that
				          				  	(14) 
and 
				         .		
Subtituting (15) to (12)
				         .				  	(15)
				 E2 = .			  	(16)
Subtituting (15) to (12)
					      				  	(17)
 				       E3 = .	   	  		(18) 
Equilibrium point for second case are E2 and E3.
	Next we will discuss the stability of those equilibrium points we found before. Suppose that
		  				 F(N, P) = N – (NP)h 
		  			            G(N, P) = P + (NP – P)h
The Jacobian matrix for the model is

	        			            	J = 

					                 = 		  		(19)
Subtituting E1 = (k, 0) to (19), we have

		     		                       	J = 

Lemma 1
If h <and k < 1 then Equilibrium point E1 saddle, otherwise it is unstable.

Proof:
Notice that the first eigenvalue of J, that is |λ1| = |1| = 1 ≥ 1. It is clear that 1 – k > 0. Suppose that h <. Since h > 0, we can write as 0 < h < that leads to 0 < h (1 – k) < 2, similar to 0 < − h (k – 1) < 2 or −1 < −1 − h (k – 1) < 1. We then rewritten as −1 < 1 + h (k – 1) < 1, that is |λ2| =|1 + h (k – 1)| < 1.
For the second case, we only consider in analyzing E2.

Lemma 2
If h < min then equilibrium point E2 is stable. 
Proof:
It can be shown that Jacobian matrix of  this case is 
						J =. 
Suppose that h <. Since h > 0, we can write 0 < h <  or −2 < −hq < 0 which leads to −1 < 1 – hq < 1, that is |λ1| < 1. On the other hand, suppose 0 < h < or 0 < h < 2. Subtracting 1 from the inequalities then we have −1 < −1 + h < 1 or −1 < −(1 − h) < 1. We see that −1 < 1 − h < 1 or −1 < 1 + h < 1, in other word |λ2| = |1 + h | < 1.

Numerical solution
Having found the equilibrium points and analyze the stability in some points, now we can simulate them to show their behavior. We use step-size h = 0.05 for all cases. For the first case in (7), we use (2.9, 0.0001) as initial condition. Figure (2) and (3) shows the result.
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	Figure 1. The Plot of N – P
	
	Figure 2. The Plot of N(t) – t and P(t) – t



	Figure 2 shows that the numerical result converge to its equilibrium, that is E1 = (0.185, 0), note that 1 – k = 1 – 0.185 > 0. Figure 3 shows that the nutrient decreases as time increases and reach the value k. We present the simulation for the second case E2.
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	Figure 3. The Simulation for The Second Case E2
	
	Figure 4. The Plot of N(t) – t and P(t) – t


Conclusion
We have found the equilibrium points of the model, and then analyze them. We found that these equilibrium points need to met certain criteria to be a stable equlibrium. We also found that choosing step-size h is impotant to reach the correct solution.
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